In Grade 5, instructional time should focus on three critical areas:
(1) developing fluency with addition and subtraction of fractions,
and developing understanding of the multiplication of fractions and
of division of fractions in limited cases (unit fractions divided by
whole numbers and whole numbers divided by unit fractions)
(2) extending division to 2-digit divisors, integrating decimal
fractions into the place value system and developing understanding
of operations with decimals to hundredths, and developing fluency
with whole number and decimal operations
(3) developing understanding of volume.
Code & Standard |
Resources |
Code: 5.OA.A.1
Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. |
Lessons Worksheets Games |
Code: 5.OA.A.2
Write simple expressions that record calculations with
numbers, and interpret numerical expressions without
evaluating them. For example, express the
calculation ԡdd 8 and 7, then multiply by 2Ԡas 2 × (8
+ 7). Recognize that 3 × |
Lessons
Numerical
Expressions |
Code: 5.OA.B.3
Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule ԁdd 3Ԡand the starting number 0, and given the rule ԁdd 6Ԡand the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. |
Lessons Worksheets Games |
Code & Standard |
Resources |
Code: 5.NBT.A.1
Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. |
Lessons
Place
Values Place Values |
Code: 5.NBT.A.2
Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. |
Lessons
Decimals Patterns in zeros |
Code: 5.NBT.A.3
Read, write, and compare decimals to thousandths. |
Lessons
Check Below Worksheets Games |
Code: 5.NBT.A.3a
Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., 347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3 × (1/10) + 9 × (1/100) + 2 × (1/1000). |
Lessons
Writing
Decimals |
Code: 5.NBT.A.3b
Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. |
Lessons
Compare
Decimals Compare Decimals |
Code: 5.NBT.A.4
Use place value understanding to round decimals to any place. |
Lessons Worksheets Games |
Code: 5.NBT.B.5
Fluently multiply multi-digit whole numbers using the standard algorithm. |
Lessons
Worksheets
Multiply 3-digit by 2-digit |
Code: 5.NBT.B.6
Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. |
Lessons
Divide by 2
digits Divide 3-digit by 2-digit (no remainder) |
Code: 5.NBT.B.7
Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. |
Lessons
Add
& Subtract Decimals Add decimals |
Code & Standard |
Resources |
Code: 5.NF.A.1
Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.) |
Lessons
Add
& Subtract Fractions & Mixed Numbers Add Fractions |
Code: 5.NF.A.2
Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5 + 1/2 = 3/7, by observing that 3/7 < 1/2. |
Lessons
Fraction
Word Problems Adding and subtracting fractions with unlike denominators word problems |
Code: 5.NF.B.3
Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie? |
Lessons
Fraction
as Division |
Code: 5.NF.B.4
Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. |
Lessons
See Below |
Code: 5.NF.B.4a
Interpret the product (a/b) × q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a × q ÷ b. For example, use a visual fraction model to show (2/3) × 4 = 8/3, and create a story context for this equation. Do the same with (2/3) × (4/5) = 8/15. (In general, (a/b) × (c/d) = ac/bd.) |
Lessons
Multiply
Fractions Multiply Fraction by Whole Number |
Code: 5.NF.B.4b
Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. |
Lessons
Area
of Rectangle |
Codes: 5.NF.B.5, 5.NF.B.5a, 5.NF.B.5b
Interpret multiplication as scaling (resizing), by: |
Lessons
Multiplication
as Scaling |
Code: 5.NF.B.6
Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. |
Lessons Worksheets Games |
Code: 5.NF.B.7
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. |
Lessons
See Below |
Code: 5.NF.B.7a
Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for (1/3) ÷ 4, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) ÷ 4 = 1/12 because (1/12) × 4 = 1/3. |
Lessons
Divide
Unit Fractions by Whole Numbers |
Code: 5.NF.B.7b
Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for 4 ÷ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4. |
Lessons
Divide
Whole Numbers by Unit Fractions |
Code: 5.NF.B.7c
Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins? |
Lessons
Divide Fractions Word Problems WorksheetsDividing fractions word problems |
Code & Standard |
Resources |
Code: 5.MD.A.1
Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. |
Lessons
Convert
Measurements Metric Length Conversion |
Code: 5.MD.B.2
Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. |
Lessons
Line Plots Interpreting line plots with fraction multiplication and division |
Codes: 5.MD.C.3, 5.MD.C.3a, 5.MD.C.3b, 5.MD.C.4
Recognize volume as an attribute of solid figures and
understand concepts of volume measurement. |
Lessons
Understand
Volume |
Codes: 5.MD.C.5, 5.MD.C.5a, 5.MD.C.5b, 5.MD.C.5c
Relate volume to the operations of multiplication and
addition and solve real world and mathematical problems
involving volume. |
Lessons
Measure
Volume |
Code & Standard |
Resources |
Code: 5.G.A.1
Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate). |
Lessons Worksheets Games |
Code: 5.G.A.2
Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. |
Lessons
Coordinate Plane Word Problems WorksheetsCoordinate plane word problems in the
first quadrant |
Codes: 5.G.B.3, 5.G.B.4
Understand that attributes belonging to a category of
two-dimensional figures also belong to all subcategories
of that category. For example, all rectangles have four
right angles and squares are rectangles, so all squares
have four right angles. |
Lessons
Worksheets
Properties of Quadrilaterals |
Rotate to landscape screen format on a mobile phone or small tablet to use the Mathway widget, a free math problem solver that answers your questions with step-by-step explanations.
We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.