A series of free Statistics Lectures with examples & solutions in videos.

These lectures cover the concepts of t-distribution, confidence intervals about the mean, population standard deviation, confidence intervals for population proportions and calculating required sample size to estimate population proportions.

This is page seventeen of the series of free video lessons, "Statistics Lectures".

When performing any type of test or analysis using a Z-score, it is required that the population standard deviation is already known.

The degrees of freedom change how the probability distribution looks. The probability distribution of t has more dispersion than the normal probability distribution associated with t.

We construct confidence level to help estimate what the actual value of the unknown population mean is.

Example:

On the Verbal Section of the SAT, a sample of 25 test-takers has a mean of 520 with a standard deviation of 80. Construct a 95% confidence about the mean.

Two requirements for constructing meaningful confidence intervals about the population proportion:

1. The size of your sample is no more than 5% of the size of the population it was drawn from.

2. np(1-p) ≥ 10

If the sample meets this requirement, it means that it has an approximately normal distribution.

Example:

In a recent poll of 200 households, it was found that 152 households had at least one computer. Estimate the proportion of households in the population that have at least one computer. Construct a 95% confidence interval to estimate the population proportion.

Rotate to landscape screen format on a mobile phone or small tablet to use the **Mathway** widget, a free math problem solver that **answers your questions with step-by-step explanations**.

You can use the free Mathway calculator and problem solver below to practice Algebra or other math topics. Try the given examples, or type in your own problem and check your answer with the step-by-step explanations.

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

[?] Subscribe To This Site