In this lesson, we will learn the union of sets and the complement of the union of sets.

Related Topics: More Lessons on Sets.

**Example : **

Given U* =* {1, 2, 3, 4, 5, 6, 7, 8, 10}

* X* = {1, 2, 6, 7} and *Y* = {1, 3, 4, 5, 8}

Find * X* ∪ *Y * and draw a Venn diagram to illustrate *X* ∪ *Y*.

**Solution: **

* X* ∪ *Y* = {1, 2, 3, 4, 5, 6, 7, 8} ←1 is written only once.

**If X ** ⊂

**Example:**

Given U* =* {1, 2, 3, 4, 5, 6, 7, 8, 10}

* X* = {1, 6, 9} and *Y* = {1, 3, 5, 6, 8, 9}

Find * X* ∪ *Y * and draw a Venn diagram to illustrate *X* ∪ *Y*.

**Solution: **

* X* ∪* Y* = {1, 3, 5, 6, 8, 9}

The **complement of the set X**

**Example: **

Given: U* =* {1, 2, 3, 4, 5, 6, 7, 8, 9}

* X* = {1, 2, 6, 7} and *Y* = {1, 3, 4, 5, 8}

a) Draw a Venn diagram to illustrate (* X* ∪ *Y* ) ’

b) Find (* X* ∪ *Y * ) ’

**Solution: **

a) First, fill in the elements for *X* ∩ *Y* = {1}

Fill in the other elements for *X* and *Y* and for U

Shade the region outside *X* ∪ *Y* to indicate (*X* ∪ *Y* ) ’

b) We can see from the Venn diagram that

(*X* ∪ *Y* ) ’ = {9}

Or we find that *X* ∪ *Y* = {1, 2, 3, 4, 5, 6, 7, 8} and so

(*X* ∪ *Y* ) ’ = {9}

**Example: **

Given U = {*x* : 1 ≤ *x *≤10, *x* is an integer}, *A* = The set of odd numbers, *B* = The set of factors of 24 and *C* = {3, 10}.

a) Draw a Venn diagram to show the relationship.

b) Using the Venn diagram or otherwise, find:

i) (*A* ∪ *B* ) ’ ii) (*A* ∪ *C* ) ’ iii) (*A* ∪ *B* ∪ *C* ) ’

**Solution: **

* A = * {1, 3, 5, 7, 9}, * B* = {1, 2, 3, 4, 6, 8} and * C* = {3, 10}

a) First, fill in the elements for * A* ∩ *B* ∩*C* = {3}, *A* ∩ *B * {1, 3},

* A* ∩ *C * = {3}, *B* ∩ *C* = {3} and then the other elements.

b) We can see from the Venn diagram that

i) (*A* ∪ *B* ) ’ = {10}

ii) (*A* ∪ *C* ) ’* = * {2, 4, 6, 8}

iii) (*A* ∪ *B * ∪ *C* ) ’ = { }

Sets: Union and Intersection.

A mathematics lesson on set operation of union.

Union of Sets

The following video describes the Union and Intersection of Sets

Union, Intersection and Complement

Venn Diagrams: Shading Regions. This video shows how to shade the union, intersection and complement of two sets.

OML Search

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

OML Search