In these lessons, we will learn the union of sets and the complement of the union of sets.

Related Topics: More Lessons on Sets

### Union of Sets

The **union** of two sets *A* and *B* is the set of elements, which are in *A*** or** in *B*** or** in both. It is denoted by *A* ∪ *B* and is read ‘*A* union *B*’
The following table gives some properties of Union of Sets: Commutative, Associative, Identity and Distributive. Scroll down the page for more examples.

### Complement of the Union of Sets

** Sets: Union and Intersection**

∪ is the union symbol and can be read as "or". The union of two sets are all the elements form both sets.

∩ is the intersection symbol and can be read as "and". The intersection of two sets are those elements that belong to both sets.

The intersection of two sets are those elements that belong to both sets.

The union of two sets are all the elements from both sets.

**A mathematics lesson on set operation of union**
**Examples to illustrate the union of sets**
**How to describe the Union and Intersection of Sets using Venn Diagrams?**
**Union, Intersection and Complement**

Example:

If D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with subsets A, B, and C where A = {4, 6, 8} and B = {6, 7, 8, 9} and C = {1, 2, 3, 4}, find the following:

A ∩ B

B ∩ C

A ∪ B

B ∪ C

(A ∪ B ∪ C)'**Venn Diagrams: Shading Regions**

This video shows how to shade the union, intersection and complement of two sets.

Example:

Shade the indicated region

(1) A ∪ B'

(2) A' ∩ B'

(3) (A ∪ B)'

You can use the free Mathway calculator and problem solver below to practice Algebra or other math topics. Try the given examples, or type in your own problem and check your answer with the step-by-step explanations.

Related Topics: More Lessons on Sets

**Example : **

Given U* =* {1, 2, 3, 4, 5, 6, 7, 8, 10}

* X* = {1, 2, 6, 7} and *Y* = {1, 3, 4, 5, 8}

Find * X* ∪ *Y * and draw a Venn diagram to illustrate *X* ∪ *Y*.

**Solution: **

* X* ∪ *Y* = {1, 2, 3, 4, 5, 6, 7, 8} ← 1 is written only once.

**If X** ⊂

**Example:**

Given U* =* {1, 2, 3, 4, 5, 6, 7, 8, 10}

* X* = {1, 6, 9} and *Y* = {1, 3, 5, 6, 8, 9}

Find * X* ∪ *Y * and draw a Venn diagram to illustrate *X* ∪ *Y*.

**Solution: **

* X* ∪* Y* = {1, 3, 5, 6, 8, 9}

The **complement of the set X**

**Example: **

Given: U* =* {1, 2, 3, 4, 5, 6, 7, 8, 9}

* X* = {1, 2, 6, 7} and *Y* = {1, 3, 4, 5, 8}

a) Draw a Venn diagram to illustrate (* X* ∪ *Y* ) ’

b) Find (* X* ∪ *Y * ) ’

**Solution: **

a) First, fill in the elements for *X* ∩ *Y* = {1}

Fill in the other elements for *X* and *Y* and for U

Shade the region outside *X* ∪ *Y* to indicate (*X* ∪ *Y* ) ’

b) We can see from the Venn diagram that

(*X* ∪ *Y* ) ’ = {9}

Or we find that *X* ∪ *Y* = {1, 2, 3, 4, 5, 6, 7, 8} and so

(*X* ∪ *Y* ) ’ = {9}

**Example: **

Given U = {*x* : 1 ≤ *x *≤10, *x* is an integer}, *A* = The set of odd numbers, *B* = The set of factors of 24 and *C* = {3, 10}.

a) Draw a Venn diagram to show the relationship.

b) Using the Venn diagram or otherwise, find:

i) (*A* ∪ *B* ) ’ ii) (*A* ∪ *C* ) ’ iii) (*A* ∪ *B* ∪ *C* ) ’

**Solution: **

* A = * {1, 3, 5, 7, 9}, * B* = {1, 2, 3, 4, 6, 8} and * C* = {3, 10}

a) First, fill in the elements for * A* ∩ *B* ∩*C* = {3}, *A* ∩ *B * {1, 3},

* A* ∩ *C * = {3}, *B* ∩ *C* = {3} and then the other elements.

b) We can see from the Venn diagram that

i) (*A* ∪ *B* ) ’ = {10}

ii) (*A* ∪ *C* ) ’* = * {2, 4, 6, 8}

iii) (*A* ∪ *B * ∪ *C* ) ’ = { }

∪ is the union symbol and can be read as "or". The union of two sets are all the elements form both sets.

∩ is the intersection symbol and can be read as "and". The intersection of two sets are those elements that belong to both sets.

The intersection of two sets are those elements that belong to both sets.

The union of two sets are all the elements from both sets.

Example:

If D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with subsets A, B, and C where A = {4, 6, 8} and B = {6, 7, 8, 9} and C = {1, 2, 3, 4}, find the following:

A ∩ B

B ∩ C

A ∪ B

B ∪ C

(A ∪ B ∪ C)'

This video shows how to shade the union, intersection and complement of two sets.

Example:

Shade the indicated region

(1) A ∪ B'

(2) A' ∩ B'

(3) (A ∪ B)'

Rotate to landscape screen format on a mobile phone or small tablet to use the **Mathway** widget, a free math problem solver that **answers your questions with step-by-step explanations**.

You can use the free Mathway calculator and problem solver below to practice Algebra or other math topics. Try the given examples, or type in your own problem and check your answer with the step-by-step explanations.

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.