OML Search

An Introduction to Functions





 
Related Topics:
More Lessons for Intermediate Algebra

More Lessons for Algebra

Math Worksheets

A series of free, online Intermediate Algebra Lessons or Algebra II lessons.
Videos, worksheets, and activities to help Algebra students.

In this lesson, we will learn

  • how to define a function
  • how to find the domain and range of a function
  • how to define function notation
  • how to calculate the composition of functions


Introduction to Functions

In mathematics, a relationship describes one quantity in terms of another. A function is a type of relationship in which for each first component there is one and only one second component. In mathematics, an introduction to functions and how to identify whether or not a relationship is a function is very important building block since a lot of complex topics in upper-level math involve functions.

Domain and Range

An important part of understanding functions is understanding their domain and range. Domain and range are all the possible x-values and y-values of the function, and can often be described easily by looking at a graph. In order to grasp domain and range, students must understand how to determine if a relation is a function and interpreting graphs.
This video introduces the definition of a function, domain, and range.
This video shows how to graph a function and how to determine the domain and range of a function.



Determine if a Relation is a Function
Determining Domain and Range


 

Function Notation

Throughout mathematics, we find function notation. Function notation is a way to write functions that is easy to read and understand. Functions have dependent and independent variables, and when we use function notation the independent variable is commonly x, and the dependent variable is F(x). In order to write a relation or equation using function notation, we first determine whether the relation is a function.
How to define function notation.
Function Notation - A basic description of function notation and a few examples involving function notation.


Composition of Functions

When we put two functions together, we have something called a composition of functions. For example, the expression g(f(x)) states that we should put the "f" function into the "g" function. To do this, we simply substitute the entire inner function into each of the variables in the outer function.
How to calculate the composition of functions.
Composition of Functions - Numerous examples are shown of how to compose functions


 

Rotate to landscape screen format on a mobile phone or small tablet to use the Mathway widget, a free math problem solver that answers your questions with step-by-step explanations.


You can use the free Mathway widget below to practice Algebra or other math topics. Try the given examples, or type in your own problem and check your answer with the step-by-step explanations.


OML Search


We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.


[?] Subscribe To This Site

XML RSS
follow us in feedly
Add to My Yahoo!
Add to My MSN
Subscribe with Bloglines